Acta Cryst. (1975). B31, 2551

The crystal structure of Ba₄Al₅. By MARIA L. FORNASINI, Istituto di Chimica Fisica, Università di Genova, Corso Europa (Palazzo delle Scienze), 16132 Genova, Italy

(Received 18 April 1975; accepted 5 May 1975)

The compound Ba₄Al₅ has hexagonal symmetry with lattice constants a=6.092 (2), c=17.782 (6) Å, space group $P6_3/mmc$, Z=2, and $g_{obs}=3.88$ g cm⁻³. The structure has been solved by trial methods and refined to a final R index of 0.085 for the observed reflexions. The structures of Ba₄Al₅ and the earlier determined Ba₇Al₁₃ are closely related to that of the Laves phase MgNi₂, from which it can be geometrically derived.

Introduction

The phase 'BaAl' was first recognized by Flanigan (1952), who assigned to this compound hexagonal symmetry with a=6.01, c=17.78 Å. Recently these data have been confirmed in a study on the Sr-Al and Ba-Al diagrams (Bruzzone & Merlo, 1975).

The structure determination of this phase, which follows that of Ba_7AI_{13} (Fornasini & Bruzzone, 1975), completes the crystallographic study of the compounds present in the Ba-Al system.

Experimental and structure determination

The preparation of the samples has been described elsewhere (Bruzzone & Merlo, 1975). Several plate-like single crystals were examined by Laue, rotating and precession techniques. The hexagonal 6/mmm Laue symmetry was confirmed and the absence of *hhl* reflexions with l=2n+1led to the possible space groups $P6_3mc$, P62c or $P6_3/mmc$.

A refinement of the lattice constants was carried out at the end of the structural work on powder photographs taken with Fe $K\alpha$ radiation and gave the values a=6.092(2), c=17.782 (6) Å. The atomic sizes of Ba and Al suggest that the contents of the unit cell are Ba_8Al_{10} ; this is confirmed by the pycnometric determination of the density as 3.88 g cm⁻³, compared with the calculated value of 3.98 g cm⁻³.

Three-dimensional intensity data from three reciprocal layers perpendicular to **a** and seven perpendicular to **c** were collected from a parallelepipedal single crystal flattened in the **c** direction (0.05 × 0.21 × 0.50 mm) using integrated precession photographs and Mo K α radiation. The intensities, measured with a microdensitometer, were corrected for Lorentz, polarization and absorption effects [μ (Mo)=142 cm⁻¹] and put on common scale by inter-layer correlation, providing a group of 279 observed independent reflexions out of a total of 392 possible.

The intensities were then scaled by Wilson's method and a statistical analysis of their distribution gave a result closer to the centrosymmetric case, so that the space group $P6_3/mmc$ was chosen for the structural determination.

At this stage, as the lattice constant *a* of Ba_4Al_5 was comparable in numerical value with the corresponding constant *a* of the trigonal phase Ba_7Al_{13} (a=6.099, c=17.269 Å), a structure based on layers analogous to those found in Ba_7Al_{13} was assumed for Ba_4Al_5 . So, using fragments of the structure of Ba_7Al_{13} and taking in account the intensity

Fig. 1. Atomic arrangement in the layers parallel to the (110) plane for the three structures Ba₇Al₁₃, MgNi₂ and Ba₄Al₅. Large circles: Ba or Mg atoms; small circles: Al or Ni atoms; double circles: Al or Ni atoms which lie above and below the layer, respectively.

values of some reflexions, namely 008 and hk7, it was possible to devise a useful trial structure. A structure-factor calculation based on tentative atomic parameters gave an $R = \sum ||F_o| - k|F_c|| / \sum |F_o|$ of 0.134.

The least-squares refinement was then carried out with a modified version of the program ORFLS (Busing, Martin & Levy, 1962), using scattering factors corrected for the anomalous dispersion effect (International Tables for X-ray Crystallography, 1962) and giving unit weight to all observable structure amplitudes and zero weight to those unobserved. The atomic coordinates were refined with iso-

Table 1. Positional and thermal parameters of Ba_4Al_5 [Space group $P6_3/mmc$ (D_{6h}^4); estimated standard deviations are given in parentheses.]

		•	1		
	Position	x	у	Ζ	$B(Å^2)$
Ba(1)	4(f)	13	23	0.0700 (2)	0.55 (8)
Ba(2)	4(<i>e</i>)	Ō	Ŏ	0.1429(2)	0.65 (7)
Al (1)	4(f)	\$	3	0.6347 (18)	2.8 (6)
Al(2)	6(<i>h</i>)	0.4909 (18)	-x	4	0.7(2)

Tab	le 2. <i>Ob</i> .	served and	d calculate	ed sti	ructure	? fa	ctors of	`Ba₄A	15
(An	asterisk	indicates	reflexions	too	weak	for	measur	ement	t).

	· 7. [7.]	b k 1 7	. I.I	N & 1	7. 11.		. IF.E		7 17 1
C 0 2	 10.5 	2 1 1 144	1 111.6	101	11 1 17 4	6 0 11 0			
	165.8 196.4	2 1 5 137	9 126.4	4 0 2	114.2 114.6	5 0 12 60	.s cu.z		143.0 120.0
0 0 6	112.0 92.2	2 1 6 151	4 175.5	4 3 3	93.2 106.6	5 0 13 49	.4 46.0	526	 13.5
0 0 8	• 25.6	217 .	22.8	1 3 1	67.4 60.5	5 0 14 50	.8 49.5	5 2 7	· 11.1
0 0 10	237.3 246.7	2 1 8 139	1 13.1	405	110.5 110.2	5 0 15 .	31.0	528	· p.j
0 0 11	226 0 227 2	1 1 0 11	9 114.2	4 0 6	96.0 99.0	5 0 10 61	.0 59.5	529	 t0.5
0 0 16	110.7 99.2	2 1 11 106	0 109 1		12.9	5 0 17 45		\$ 2 10	110.4 102.2
0 0 18	139.8 136.4	2 1 12 70	3 66.6	4 0 0	92.9 91.4	1 1 0 270		2 4 11	
0 0 20	• 3.5	2 1 13 92	0 46.9	4 0 10	113.2 114.7	3 3 2 58	2 50.4	\$ 2.13	
0 0 22	\$0.8 46.1	2 1 14 61	.5 61.0	4 0 11	90.5 99.7	3 3 4 148	4 147.9	\$ 2 14	145.7 168.7
0 0 24	74.0 79.6	2 1 15 47	4 12.9	4 0 12	19.0	4 2 0 56	.1 50.3	610	48.0 34.6
	72.4 50.0	2 1 10 85	2 73.6	4 0 13	19.2	421 •	1J.1	611	• 57.3
1 0 2	95.0 86.5	2 1 18 76	0 65.1	1 0 15		4 2 2 90	.1 92.9		44.0 44.7
103	136.0 143.4	2 1 19 50	8 75.1	4 0 10	· u.i		7 41.3		0j.0 0V./
104	156.8 158.3	2 1 20 69	2 81.7	4 0 17	59.0 60.8	4 2 5 95	.6 90, 3	615	84.0 80.2
105	164.2 164.1	2 1 21 •	15.0	4 0 15	\$2.3 90.7	4 2 6 92	.5 36.9		99.6 102.8
100	140.5 201.1	2 1 22 84	8 89.5	1 3 19	N4.6 65.2	4 2 7 .	9.7	617	• o.s
105	166.6 1.19.6	2 1 2 6		1 0 10	4.7 90.6	4 2 8 130	.9 136.7	6 1 8	78.2 80.9
109	136.1 119.6	100 43	4 115.1		54.5 44.0	4 2 9 55	4 75.4		68.5 55.7
1 0 10	84.3 89.4	301.	11.2	3 2 2	62.2 57.4	4 2 11 89	3 80.1	6 1 11	60.2 70.0
1 0 11	135.1 129.5	30285	5 80.0	3 2 3	83.5 90.2	4 2 12 .	19.6	6 1 12	18.9 42.7
1 0 12	75.6 73.1	303 •	10,9	324	111.7 108.0	4 2 13 •	35.9	6 1 13	• 27.1
1 0 14	61.8 65.6	3 0 4 218	0 212.5	1 1 1	119.6 115.7	4 2 14 •	15.4	6 1 14	• 38.9
1 0 15	• 27.5	100	10.5	1 2 6	134.8 142.5	4 2 15	22.3	6 1 15	• 14.7
1 0 16	81.6 80.6	107 .	9.9	1 2 6	109.5 111.0	4 2 10 19	1.5	0 1 10	45.0 47.8
1 0 17	75.5 79.0	308 30	\$ 39.2	1 2 4	58.5 76.9	4 2 18 79	0 10 1	6 I I/	30.0 30.1
1 0 18	67.0 72.5	300 .	9.2	3 2 10	79.2 68.0	4 2 19 82	1 57.7	6 1 19	19.5 40.0
1 0 19	80.3 75.0	3 0 10 155.	4 154.9	3 2 11	107.7 105.1	4 2 20 97	\$ 87.0	4 4 0	217.7 211.5
1 0 20		1 0 11 .		3 2 12	74.7 57.5	5 1 0 50	6 39.4	4 4 2	· 17.5
1 0 22	84.1 95.0	1 0 10		1 2 13	20.0		25.2	4 4 4	86.1 84.0
1 0 23	50.5 48.5	3 0 14 236.	5 241.8	1 2 15	7 17.1	5 1 2 50	5 51.6	7 0 0	29,8
1 0 24	46.8 55.5	3 0 15 +	6.8	3 2 10	56.8 01.5	5 1 4 91	8 88.7	, , ,	39.5 40.0
1 0 25	76.2 63.5	3 0 16 60.	7 43.6	3 2 17	72.8 74.7	5 1 5 81	0 81.9	7 0 3	60.6 60.8
	343.2 400.5	3 0 17		3 2 18	\$0.4 60.6	5 1 6 107	5 117.9	704	77.8 75.2
	222.5 250.0	2 2 0 170	7 17.4	3 2 19	85.1 57.4	517	13.4	7 0 5	81.4 79.2
1 1 6	· 15.5	111	16.4	1 1 1	• 20.5	510 80	0 V0.7	700	90.8 98.6
1 1 8	46.0 40.3	2 2 4 133.	0 140.8	3 2 22	69.7 80.2	5 1 10 70	2 01.7	7 0 8	61.8 79.6
1 1 10	189.9 174.0	2 2 6 70.	7 69.5	4 1 0	287.4 267.3	5 1 11 72.	1 79.5	5 3 0	47.9 34.6
111	251.6 261.7	2 2 10 181	14.1		· 5.5	5 1 12 51	2 48.2	5 3 1	• 30.3
1 1 16	69.2 53.4	2 2 12 59	2 (9.6	::;	01.4 01.6	5 1 13	38.5	5 3 2	47.2 43.9
1 1 18	101.0 95.0	2 2 14 173.	6 192.5	414	105.3 105.0	5 1 15	24.0	, , , ,	30.1 70.8
1 1 20	• 28.7	2 2 16 93.	7 81.5	415	• 5.1	5 1 16 55.	2 54.0	5 1 5	71.4 69.4
1 1 2	18.6	2 2 18 117.	0 114.5	4 1 6	· 15.3	5 1 17 50.	4 50.3	5 3 6	93.2 94.2
1 0 0	142.0 117.1	2 2 20 1		4 1 2	• 7.7	5 1 18 64.	0 56.0	620	60.0 \$7.0
201	60.4 45.3	1 1 4 76.	72.7			5 1 19 54.	9 58.5	6 2 1	• 17.7
202	164.0 153.9	3 1 0 62.	4 48.0	4 1 10	111.4 129.5	\$ 1 21 .	, ,,,		61.0 65.7
103	144.3 135.0	3 1 1 49.	4 42.5	4 1 14	. 0.0	\$ 1 22 55.	9 71.0		50.8 45.8
104	91.8 72.7	3 1 2 71.	3 65.6	4 1 12	• 10.4	6 0 0 254.	7 248.3	625	00.4 05.2
106	186.4 121 2	3 1 3 104.	3 100.5	4 1 10	6.0	601 .	0.4	626	70.7 69.6
2 0 7	17.3	3 1 5 125.	4 120.2	118			17.0	7 . 0	154.0 168.3
208	211.7 202.3	1 1 6 154.	6 155.2	4 1 10	34.3 43.0	6 0 4 100.	4 99.4	<i></i>	4.3
109	129.8 114.9	117 .	10.7	4 1 17	• 4.8	605 ·	0.4	7 1 3	• 4.2
7 0 10	177 3 110 4	3 1 6 123.	122.3	4 1 13	82.0 76.5	606 19.	7 48.0	714	95.5 97.5
2 0 12	41.2 19.0	3 1 10 \$2.	5 75.1	1 1 10	4.3	607 .	0.3	7 1 5	• 4.1
2 0 13	47.9 42.7	1 1 11 110.	\$ 106.7				1.6	7 1 6	• 10.6
2 0 14	* 18.Z	3 1 12 67.	2 60.5	4 1 22	· 18.4	0 0 10 121.	\$ 170.7	240	- 7.7
2 0 15	29.0	3 1 13 +	37.7	4 1 23	• 3.2	6 0 11 +	0,1	5 4 2	• 16.0
2 0 16	45.2 36.8	1 1 4 73.	9 55.4	4 1 24	75.2 84.9	6 0 12 125.	7 43.1	5 4 3	50.1 55.4
2 0 18	102.9 105.7	3 1 16 14	4.1	300	51.3 38.4	4 3 0 48.	9 34.9	544	63.6 65.8
2 0 19	77.6 74.3	3 1 17 71.	70.5	502	5.1 57.0		20.9	545	70.0 68.6
2 0 20	105.8 114.9	3 1 18 60.	65.1	503	92.0 106.8	4 1 1 1 12.	e 40.0		04.8 56.7
2 0 21	18.9	3 1 19 74.	8 65.6	504	93.9 99.7	4 3 4 9).	9 64.4		62.6 63.5
1 0 22	51.1 05.9	3 1 20 70.	: 77.7	505	82.9 82.1	4 3 5 73.	9 69.3	7 2 4	57.5 62.7
2 1 0	62.9 17.7	1 1 22 14	18.0		118.8 131.3	4 3 6 111.	2 111.6	720	65.8 82.3
211	40,2 35,0	3 1 23 46	42.8	507	DS 8 102	5 2 0 215.	9 203.3	816	60.0 75.2
1 1 2	78.3 72.8	1 1 24 45.	48.6	ć	91.5 00.1		14.2		
213	141.7 133.1	4 0 0 111.	98.7	5 0 10	74.6 62.7		12.0		

Table 3. Interatomic	distances	in	Ba_4Al_5	(Å)
----------------------	-----------	----	------------	-----

Ba(1)-3Ba(1)	4.31	Al(1) - 1Ba(1)	3.64
-3Ba(2)	3.75	-3Ba(1)	3.70
-1Al(1)	3.64	-3Ba(2)	3.52
-3Al(1)	3.70	-3Al(2)	2.77
-3Al(2)	3.61		
		Al(2)-2Ba(1)	3.61
Ba(2)-3Ba(1)	3.75	-4Ba(2)	3.59
-1Ba(2)	3.81	-2Al(1)	2.77
-3Al(1)	3.52	-2Al(2)	2.88
-6Al(2)	3.59	-2Al(2)	3.21

tropic thermal parameters and one scale factor in three cycles of full-matrix least-squares calculations to an R of 0.085 for the observable reflexions. After the last cycle the average shift in the parameters was 3% of their estimated standard deviations.

The final positional and thermal parameters are listed in Table 1, and observed and calculated structure factors in Table 2.

Discussion

The interatomic distances of Ba_4Al_5 are listed in Table 3. As in the case of Ba_7Al_{13} , while Ba-Al and Al-Al distances have usual values, some Ba-Ba distances show appreciable contraction, nearly 15–16% with respect to the metallic radius of barium.

The atomic distribution gap criterion, already applied in other cases (Bruzzone, Fornasini & Merlo, 1970), was used to evaluate the coordination numbers of the atoms. Ba(1) and Ba(2) both have coordination number 13. Ba(1) is surrounded by three Ba(1) at 4.31 Å, three Ba(2) at 3.75 Å and seven Al ranging from 3.61 to 3.70 Å; Ba(2) is surrounded by three Ba(1) at 3.75 Å, one Ba(2) at 3.81 Å and nine Al (3.52-3.59 Å). Al(1) is coordinated with seven Ba atoms ranging from 3.52 to 3.70 Å and with three Al at 2.77 Å; Al(2) is surrounded icosahedrally by six Ba (3.59-3.61 Å) and six Al ranging from 2.77 to 3.21 Å.

As can be seen in Fig. 1, the structure of Ba_4Al_5 is closely related to those of the trigonal Ba_7Al_{13} and of the hexagonal MgNi₂ phases. The three structures are built up by layers parallel to the (110) plane and are characterized by the common presence of three-dimensional blocks (shown in Fig. 1 by dashed lines) with the largest atoms (Ba or Mg) arranged in a distorted tetrahedral close packing. The structure of Ba_4Al_5 can be derived from the Laves phase polytype MgNi₂ in the following way: (a) alternate blocks shift by an amount equal to a1/3/3 in the [110] direction; (b) the Ni atoms at the boundaries of the blocks, which form kagomé nets in the MgNi₂ type, are removed; (c) the blocks approach together along the c axis. The final arrangement is shown in Fig. 1(c).

As already noted (Fornasini & Bruzzone, 1975), starting from the MgNi₂ structure, Ba_7Al_{13} also can be derived, maintaining the blocks in the same sequence and removing for each block two consecutive layers, one containing triangular nets of Mg and the other bringing kagomé nets of Ni atoms [Fig. 1(*a*)].

The author wishes to thank Professor A. Iandelli for his advice and valuable discussion. This work was sponsored by the Italian C.N.R.

References

- BRUZZONE, G., FORNASINI, M. L. & MERLO, F. (1970). J. Less-Common Met. 22, 253-264.
- BRUZZONE, G. & MERLO, F. (1975). J. Less-Common Met. 39, 1-6.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. Oak Ridge National Laboratory Report ORNL-TM-305.
- FLANIGAN, E. M. (1952). Thesis, Syracuse Univ., Syracuse, New York.
- FORNASINI, M. L. & BRUZZONE, G. (1975). J. Less-Common Met. 40, 335-340.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

11 . .